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ABSTRACT  
In military tactical operations, there is an increased demand for machine-based decision support 
capabilities to support human decision-makers. Artificial Intelligence (AI) and Modelling and Simulation 
(M&S) are key technologies for enabling these capabilities, showing considerable progress in recent years. 
AI technologies become increasingly proficient in cognitive tasks such as situation assessment, course of 
action planning, and teaming with humans. Advances in simulation achieve higher levels of realism in 
representing physical and behavioural elements of the battlefield. Furthermore, there is growing synergy 
between the technologies, as seen by applications of e.g. generative modelling and reinforcement learning. 

In this paper, we present an overview of the multi-faceted and interdependent roles of AI and simulation for 
empowering decision support capabilities in military decision-making. Based on an analysis of decision 
support, we assess upcoming AI technologies and their potential impact. Subsequently, we identify 
considerations for military M&S platforms for exploiting these technologies. For illustrative examples, a 
case study is used in the domain of tactical air command & control. 

The aim is to provide insights within the community on the impact of current AI advancements in enhancing 
military decision support, and the corresponding needs of M&S technologies, building upon existing R&D 
efforts in the field. 
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1.0 INTRODUCTION 

Decision-making is a critical process in military tactical operations. It is where information is gathered and 
analysed, situations assessed, courses of action considered, and operational plans are made to achieve 
specific mission objectives. The role of decision-making for the military operator also changes, due to an 
increasingly technology-driven battlefield. This can be seen throughout all command levels and 
organizational roles, from analysist and commanders, to platform operators and soldiers on the ground. 
Better access to and use of data and information will improve the quality and agility of decision-making, 
enabling increased adaptiveness during operations and faster mission planning cycles. At the same time, the 
integration of unmanned systems will lead to increased autonomous sensing and acting capabilities at the 
edge, which require human oversight and orchestration [1]. These developments impose different demands 
for an operator, involving more strategic thinking with stricter time-constraints, while teaming with 
intelligent systems to achieve a faster OODA-loop. In this regard, to prevent information and cognitive 
overload for an operator, the use of intelligent decision support systems (DSS) are vital to accompany the 
human in this changing role [2]. 

Artificial Intelligence (AI) and Modelling and Simulation (M&S) are key technologies for enabling machine-
based decision support, each showing considerable progress in recent years. AI technologies become 
increasingly proficient in cognitive tasks such as sensory processing, situation assessment, course of action 
planning, and teaming with humans. The potential impact of AI on the military decision-making process has 
regularly been assessed [3], [4]. Consequently, advances in simulation achieve higher levels of realism in 
representing the physical and behavioural elements of the battlefield, also in part driven by AI. Synthetic 
environments can be developed faster from real-world data sources to simulate representative mission 
environments [5], whereas Computer Generated Forces (CGF) to populate these environments are equipped 
with more realistic behaviour models to simulate friendly or adversarial behaviours [6]. Such AI-enabled 
simulation environments can be used for decision support to understand complex real-world mission 
environments and evaluate different courses of action against potential adversaries, in a safe and cost-
effective manner [7], not only for mission planning and execution purposes but also for experimentation and 
training purposes [8]. 

There is also a growing synergy between AI and M&S technologies, accelerated by AI advances and fuelling 
opportunities for decision support. For instance, generative AI has seen tremendous progress in creating 
highly realistic visual or auditory content, whose underlying algorithms are explored for generating realistic 
virtual environments and human behaviours [9], [10]; task-solving algorithms continue to improve each year 
and can cope with more complex tasks in more complex environments with less training time, often by 
several orders of magnitude [11]; and due to recent breakthroughs in large language models (LLMs), this 
technology is rapidly being integrated into human-machine interfaces, and its potential for military decision 
support has already been envisioned in detail in commercial promotional videos [12]. In this evolving 
landscape, there is a continuous demand for R&D and experimentation on how some of these technologies 
can be tailored to and applied for military decision support. However, as a viable playground for military 
tactical environments, current military M&S platforms often lack some essential capabilities that hinder such 
AI experimentation on a broader scale. 

This paper presents an overview of the interdependent roles of AI and simulation in military tactical decision 
support. Based on an analysis of decision support where we review related work, we conduct a horizon scan 
of AI technologies and their potential impact. Consequently, we identify a set of considerations for military 
M&S systems to facilitate the integration of AI technologies. The aim is to provide insights within the 
community on the impact of current AI advancements in enhancing military decision support and the 
corresponding needs of M&S technologies. 
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2.0 MILITARY DECISION SUPPORT: A BRIEF ANALYSIS 

Military decision support is often discussed in terms of how (AI) technology can support a decision maker in 
its decision-making process, such as the well-known OODA-loop [3], [7]. In this section we present a 
comparable view of decision support, but with a focus on tactical C2. In a C2 context, the Dynamic OODA-
loop (DOODA-loop) has been proposed as a general model of C2 that can be used for the strategic, 
operational and tactical levels, highlighting the adaptive qualities of mission execution [13]. Figure 2-1 
illustrates a basic view of decision support, in alignment with the DOODA-loop from [14]. Complementary, 
the view highlights the decision-making process as a joint process between an operator and an (AI) system, 
requiring some form of teaming between the actors. Below, we describe the different functions in this 
process and the role of AI herein. 

 

Figure 2-1: A military decision support system (DSS) view in a C2 context 

Sensemaking: is the process that interprets data collected from the environment into actionable information 
and aids in determining necessary actions through the establishment of a course of action (COA). In terms of 
data analytics, it covers all levels of analytics: descriptive, diagnostic, predictive, and prescriptive [15]. 
Decision support is mainly concentrated around this process, in which we distinguish between providing 
support for establishing (1) situational awareness and (2) situation understanding. Where situational 
awareness governs the real-time perception and interpretation of what is happening, situation understanding 
provides a deeper analysis of why things are happening by forming a comprehensive grasp of the overall 
context, implications and potential courses of action (COA) concerning the mission. 

One role of AI for decision support is using analysis methods to facilitate operators in quickly understanding 
and evaluating the situation through insightful information, hereby lowering the cognitive burden of 
information processing. Examples are plentiful and can relate to geospatial analysis [16], tracking, 
aggregating and annotating enemy units based on a priori intelligence [17], predicting enemy movements, or 
analysing ingress strategies such as helicopter landing zones [18]. Providing analytical results towards the 
operator is often mediated through some form of tactical common operational picture (COP).  
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Consequentially, AI can support operators in developing, testing, evaluating and weighing different 
hypotheses for effective COAs. These processes are common in military planning methodologies such as the 
Military Decision-making Process (MDMP) [19]. Two common paradigms of AI used are conventional 
computational experimentation and contemporary optimization-based methods, both dependent on 
Modelling & Simulation (M&S) technologies. Through computational experimentation, what-if scenarios 
can be run to measure and analyse different plans’ expected effects [3]. Through techniques such as Monte 
Carlo-based search methods, large amounts of scenarios can be computed and analysed, and the results 
offered to the operator [1], [20], [21]. Alternatively, machine learning-based approaches, such as 
reinforcement learning (RL), gain traction and are based on self-learning algorithms to learn optimal 
behaviour policies (COAs in this context) through trial and error in interactive simulation environments [22]. 
Trained models can be used to optimise strategies or tactics of individual units or the coordinated behaviours 
between teams. These algorithms can support decision-makers in various ways, such as determining 
effective friendly COAs or the enemy's most likely or most dangerous COAs, Red Teaming, and tactics 
development to identify weaknesses in the tactics of allies or enemies.  

Planning: is the process of translating a selected COA to an operational plan for action that can be 
effectuated into military activity through instructions, orders or tasking. It translates what needs to be done to 
how it is to be done [13]. In terms of decision support, similar AI technologies used for developing COAs 
could be used for generating plans. However, as planning can be regarded as a more low-level decision 
problem, different techniques may be deemed necessary. To give an example, a COA in an air mission may 
reflect the act of conducting a precision strike on a high-value enemy target, whereas an associated plan may 
involve specific routing strategies of strikers to minimize visibility from enemy radar. To facilitate different 
levels of AI optimization, different levels of abstraction may also be required for M&S environments. 
Common levels in military simulation are the engineering, engagement, mission and campaign levels, 
associated with different levels of details and aggregation [23].  

Military activity and data collection: is about producing effects in the environment, and collecting data from 
the environment used for sensemaking. These processes fall outside the scope of a C2 decision-making 
process. However, depending on the capabilities of the presumed system from Figure 2-1, it may support 
these processes by e.g. delegating instructions through communication and coordination between 
(un)manned assets, or mediating with Intelligence Requirement Management and Collection Management 
(IRM&CM) processes. 

Human-machine teaming: refers to the collaborative interaction between the operator and the system,  where 
each actor contributes its unique strengths and capabilities to enhance overall performance, decision-making, 
and problem-solving. True collaborative decision-making demands that involved actors are mutually 
predictable and directable, and maintain a common ground [24]. However, the necessity of such 
requirements depends on the level of integration and the role of AI in the decision-making process. In [4], an 
assessment is given of different levels of human-AI collaboration, incorporating AI qualities such as 
transparency, explainability, initiative, adaptiveness, and Theory of Mind.  

It should be noted that there are also reservations on the capabilities of AI in C2 decision-making and that 
human judgement remains essential. In [25], it is argued that AI cannot reliably compliment or replace the 
human role in apprehending strategic environments, as military decision-making environments are non-
linear, complex and uncertain, and tactical commander’s qualities of initiative, creativity and empathy 
remain critical. In [3], it is further recognized that AI will not have the capability (in the near future) to 
automate the role of a decision-maker in a C2 system, establishing orders without a human-in or -on the 
loop, and that instead of a more gradual introduction of AI seems plausible. 
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3.0 AI HORIZON SCAN 

The field of AI is rapidly developing in recent years. This section describes a selection of developments and 
assesses their impact on military decision support. Mainly, we focus on those techniques that support the 
processes of sensemaking, planning and teaming from the previous section. 

Large Language Models 
Large language models (LLM) are deep neural networks trained on vast amounts of text data to understand 
and generate human language. Models such as GPT-3.5 have emerged as crucial tools with significant 
implications and continue to impact various sectors. Their ability to comprehend context and perform 
language-related tasks at a human-like level makes them highly valuable in driving societal progress [26]. 
These models demonstrate their potential to streamline processes, extract insights from vast data, and 
provide intelligent solutions. More potential lies in the realm of multi-modal LLMs (MLLM). These models 
process, besides text, other modalities such as images or visual and auditory content in video, allowing the 
model to grasp a more extensive understanding of the world that is not solely based on text [27]. 

LLMs provide a natural method for human-machine interaction. Moreover, they exhibit teaming 
characteristics where they can build common ground with users through intentful machine interaction. 
Through AI alignment techniques, LLMs can be trained to ensure that results align with human preferences, 
values and intentions [28]. Their ability to analyse different data types and reasoning about them in human 
language makes this class of models perfect candidates for assisting military commanders in sensemaking. 
They can help assess the feasibility and risks associated with different COAs by developing more informed 
strategies, refining operational plans, and evaluating potential outcomes. Moreover, users can interact with 
these models to understand their reasoning process and identify arguments behind decisions. 

For the acceptance of LLMs in professional and high-risk domains such as the military, the models must be 
robust and trustworthy. I.e., knowing if a model’s output is factually correct according to the task it is trained 
on and is not hallucinating (generating nonsensical or unfaithful content) [29]. To this end, a significant 
effort is put into analysing the causal reasoning capabilities of LLMs. LLMs outperform state-of-the-art 
causal reasoning algorithms in important reasoning topics such as counterfactual inference and graph 
discovery, making remarkably few mistakes (albeit important ones) while continuing to improve [30].  

Reinforcement learning 
Reinforcement learning (RL) is a machine learning paradigm where agents learn optimal decision-making 
strategies (c.f. policies) through interaction with an environment. RL has shown significant progress in the 
last decade, demonstrated by the evolution of game-playing agents able to master complex strategic games 
such as Go or Starcraft II. Although initial advances in hardware computing have played a large role in the 
progress of RL, nowadays, many innovations focus on learning efficiency through improved learning 
strategies. Efficiency is improving yearly by several orders of magnitude, incrementally building upon 
learning enablers such as short-term and episodic memory, exploration strategies, and meta-learning [31]. 

RL techniques can support sensemaking and planning processes due to their strategic and tactical planning 
capabilities. Related research in the military domain has demonstrated RL for COA optimizations in battle 
situations [21], [22]. Current demonstrations take place in austere environments compared to the intracity 
and complexity of real-world battle environments. Though with the prospect of above improvements in 
learning efficiency, demonstrations in increasingly complex environments are expected, where AI-driven 
strategies can be used as blueprints for actual military engagements. 

Besides environment complexity, RL algorithms commonly struggle to find policies in environments with 
sparse rewards. Solutions that may seem easy to judge by humans (e.g. through common sense or intuition) 
can be challenging to grasp for machines. To address this problem, RL with human feedback (RLHF) has 
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recently been proven to be highly effective in improving RL systems [32], [33]. RLHF uses human-
generated feedback to allow learning from human expertise. This approach has already succeeded in 
domains where defining explicit reward functions is challenging, such as language generation, game-playing, 
and autonomous driving [33]–[36]. From a military perspective, such an approach benefits strategic planning 
problems by using the experience of expert decision-makers and subject matter experts.  

Semantic graphs 
A semantic graph is a graphical model that captures semantic relationships between concepts in a graph-like 
structure. A knowledge graph (KG) is a specific type of semantic graph used for knowledge representation. 
KGs are useful for various application fields such as question answering-systems (QnA), recommender 
systems, information retrieval, and data governance and analytics, being applied in domains such as medical, 
cyber security, finance or journalism.  

KGs are well suited to support the sensemaking process through their ability to translate, organize and 
structure data into information and knowledge. In the military domain, they can represent battlefield situation 
awareness and support C2 [37]. They assist in multi-source intelligence analysis, allowing effective 
visualizations, searching and querying of information. At the same time, operators can derive meaningful 
conclusions and make more informed decisions in response to evolving situations. 

More recently, Graph Neural Networks (GNNs) have gained much traction in the deep learning community, 
where a prime application domain is the decision sciences [38]. GNNs are deep learning models designed to 
work with graph-structured data, like KGs. These models help to predict missing information, classify and 
cluster knowledge, and enhance reasoning capabilities [39]. Furthermore, generative AI models for graphs 
have made significant progress in recent years, transforming the field of network analysis and prediction. 
These generative models, which often rely on GNNs, allow the generation of realistic and diverse graph 
samples to represent real-world intricate network patterns and have demonstrated potential in capturing 
complex relationships and structures in social networks and biological systems [40]. Such models can 
provide a powerful toolset for military operators to assist in developing scenarios and plausible adversarial 
strategies, enhancing war gaming exercises and simulation-based training.  

Foundation models 
The evolution of foundation models represents a pivotal advancement in AI. Foundation models are large-
parameter machine learning models pre-trained on extensive datasets to succeed in a range of different tasks. 
Their adaptability and generalization capabilities enable customization for specific tasks through a process 
called transfer learning. Foundation models go beyond traditional task-specific approaches and can be used 
as a ‘general-purpose’ starting point for developing specialized applications. They have the potential to 
automate processes and supporting decision-making in different industries and sectors, such as healthcare, 
education, law, robotics, and the military [41]. 

In military operations, foundation models offer significant promise, especially when dealing with the 
inherent challenges of limited and unlabelled data. This scarcity of data can hinder the effectiveness of 
conventional machine learning methods that rely on extensive labelled datasets. Foundation models provide 
an innovative solution to this predicament. Leveraging their pre-trained knowledge, they can extract insights 
from external data sources and apply this to learning new, data-scarce tasks with minimal adaptation. This 
ability empowers foundation models to excel in decision-support tasks for the military, offering actionable 
insights and informed recommendations even in situations where traditional machine-learning approaches 
would struggle. Military decision-makers can utilize these models as powerful tools for generating 
operational strategies, predicting outcomes, and optimizing resource allocation, enhancing the quality and 
effectiveness of military operations. However, there are also risks involved. Due to the emergent properties 
of these models, there is a lack of understanding of how they work, what they are capable of, and when they 
fail [42]. Furthermore, bias in these models propagates to downstream applications built on them. 
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4.0 USE CASE 

This section describes a use case example of a military decision support capability in the domain of tactical 
air command and control (C2). In this domain, the role of a Battle Manager provides a C2 capability to 
airborne and ground units and is responsible for overseeing and coordinating various aspects of a military 
operation. It includes activities such as developing mission plans, allocating resources, managing an effective 
use of airspace, identifying potential threats and response strategies, maintaining rules of engagements, 
tasking units, and assessing battle damage.  

Decision support system 
We formulate an example as a tactical decision support system (DSS) that can support the Battle Manager in 
analysing and developing different (friendly or enemy) COAs. Such a support system can develop response 
strategies for (actual, predicted or hypothetical) arising threat situations, forming COAs and operational 
plans for offensive and defensive military response by units in the field. Figure 4-1 illustrates the context of 
such a DSS. The left side shows an example sketch of a human-machine interface (HMI) for the operator, 
including a COP and a decision aid interface. The COP is used to display the real-time battlefield picture, 
annotated with various analytical insights, in this instance, for an incoming threat situation. The decision aid 
shows proposed COA options for which unit is most suited to engage the incoming threats, including 
argumentations and the option to effectuate a COA. In the context of the C2 process described in section 2, 
the DSS here would support the sensemaking process using AI-based models such as those described there. 
Initial concepts for this example of decision support have been developed in collaboration with military 
operators, though a detailed description is not within the scope of this paper. The right side of the figure 
sketches the application scope in which the DSS can be deployed, which we describe next. 

 
Figure 4-1: Tactical decision support system with an example interface sketch on the left and 

various application contexts on the right. 

Application scope 
The sketched DSS with decision aid technology for COA development is not limited to being only used 
during live mission operations and can be employed across activities of mission operation, CD&E, and 
personnel training [8]. First, in mission operation, it can be integrated into mission planning, e.g. to develop, 
analyse and compare different game plans based on what-if scenarios; into execution, e.g. to track COAs as 
they are unfolding, updating game plans based on new potentially unexpected situations, and proposing 
adaptations to in-mission plans; or into debrief, e.g. to collect lessons learned based on assessments of 
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executed COAs, or based on what-if scenarios performed in hindsight for pivotal situations. Second, in 
CD&E, the technology can be used as a valuable support tool for experimentation through simulation in 
Battlelabs, e.g. for supporting the development of new doctrine or tactics; or for testing and evaluating the 
capabilities of new or future platforms or weapon systems in simulated mission environments. Finally, the 
capability could address a training gap, recognized for mission training at the higher tactical (command) 
level [8]. Trainees can train on tactical decision-making through wargaming activities through simulation-
based training supported by machine-based COA analysis and development. 

These examples illustrate that the decision aid technology applies across different military activities and 
contexts and is usable in both live and simulated mission environments. In the next section, we zoom in on 
the role of mission simulation in the DSS and discuss some key considerations for integrating and exploiting 
AI technologies herein. 

5.0 AI-ENABLED MISSION SIMULATION 

In the DSS sketched in the previous section, mission simulation plays a two roles. On the one hand, the 
simulation is used as real-time human-in-the-loop environment where the human operator can observe the 
environment and interact with military units that can represent live, virtual or constructive entities. On the 
other hand, the DSS uses the simulation environment to find, assess and generate solutions to decision 
problems using AI algorithms. Numerous M&S platforms are capable of mission simulation to fulfil the first 
role. For instance, government- or commercial-off-the-shelf Computer Generated Forces (CGF) platforms 
are broadly used in military training or Battlelab environments to simulate intricate mission environments. 
However, many of such platforms do not provide adequate flexibility to fulfil the second role. In this section, 
we describe the rationale for this. 

Figure 5-1 depicts a reference model for a DSS capable of AI-enabled mission simulation. It shows a human 
operator supported in its decision-making process by various decision support services in a shared mission 
environment. These services may use a variety of AI models to facilitate sensemaking and planning 
problems. We highlight a set of considerations for operationalizing such AI models, focusing on the role of 
mission simulation. These considerations relate to the AI’s (1) context of operation, (2) data requirements, 
(3) training environment, and (4) operational environment.  

Context of operation 
Deployed AI models address a particular problem in the mission environment, such as analysing, classifying, 
predicting or optimizing behavioural activities, for particular forces, groups or individuals. Designing, 
training and deploying these models successfully is always done in a particular mission context. This mission 
context provides the requirements, constraints and assumptions for the models and the environment they 
need to operate in. A context pertains to e.g. (1) expected geographical locations, conditions and threat types 
and behaviours that can be encountered, (2) rules and constraints on blue force’s operation, such as following 
specific doctrine, operating procedures, rules of engagements, or other rules derived from mission planning, 
and (3) knowledge about the adversary’s operational capabilities that may be known through Intel or lessons 
learned from previous operations. 

It is vital to consider this contextual information when developing and training AI models. As it can contain 
dynamic, mission-specific elements, models may require re-training or fine-tuning to make them fit for 
purpose and tailored to a particular mission. Understanding the context and scope (and thus potential 
limitations) of AI models is crucial for an operator in judging the value of the outcomes of the models.  
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Mission simulation can be used here to reflect a representative operational environment scope for AI models 
during their training loop. To be an accurate representation, a simulated environment must reflect the mission 
context through the simulation of military entities (i.e. CGFs), equipped with appropriate physical and 
behavioural models that can operate in the required environment. In M&S systems, this context of the 
mission environment can be made available through existing or predefined scenarios and CGF models. 
However, developments in generative AI modelling will allow for more automated methods of generating 
appropriate mission environments and behavioural activity, fed by existing data and knowledge about the 
mission context. 

 

Figure 5-1: AI-enabled mission simulation in the context of a DSS 

Data requirements 
Many AI models rely on the availability of large datasets. For instance, consider machine learning-based 
classification or prediction models for behaviour analytics, or data-driven behaviour modelling approaches 
such as behaviour cloning or generative AI. In the military domain, behavioural data is often a scarce 
resource. Historical data on battle scenarios is limited, while collected training or operational data is often 
treated as sensitive and classified information. A common approach in AI for data-scarce problems is using 
data augmentation using synthetically generated data.  

Mission simulation is ideally suited for this role. Through the simulation of constructive entities, large 
amounts of (labelled) time-series datasets can be generated for entity behaviours in various mission 
scenarios, battlefield configurations and environmental conditions. Fit for purpose synthetic data generated 
through mission simulation can be used to improve the quality of behaviour models through transfer learning 
techniques or the augmentation of real-world human data. 
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AI training environment 
Certain categories of AI models require an interactive training environment. For instance, RL algorithms 
explore the consequences of actions in a learning environment in a trial-and-error fashion, or search 
algorithms such as Monte-Carlo tree search (MCTS) play out simulation runs to explore the effectiveness of 
different courses of action and the utility of certain environment states. 

Mission simulation is suited to provide a development and training environment for such AI models. 
However, adopting the role of an AI training environment comes with strong demands for the configurability 
and computational capabilities of the simulation. On the one hand, the environment should be 
algorithmically configurable to establish a high-value training environment through scenario generation and 
adaptation techniques, required to facilitate smart learning strategies or heuristic searches for AI models. On 
the other hand, strong computing abilities are needed to facilitate the training of AI models in a reasonable 
time span [6]. Training time is especially relevant when AI models need updating for operations in new 
mission contexts. Computing abilities include faster-than-real-time (FTRT), headless execution, high-
performance computing (HPC) and parallelization methods. Although innovations in AI algorithms continue 
to improve training efficiency, they are still sample-inefficient compared to human learning.  

Digital twin environment 
When AI models are used in deployment for real-time decision support, their inputs should reflect the 
current state of the operational environment. The mission simulation can reflect this state when it can act as a 
digital twin of the environment [43]. A digital twin environment is continuously updated with real-time data 
and enables AI capabilities for streaming analytics or real-time (re-)planning. 

When mission simulation is used as a training environment and operational environment for AI models, the 
representational gap between the AI’s source and target domain can be minimized, leading to more efficient 
transfer and interoperability between these environments. Many M&S systems, like those with live-virtual-
constructive (LVC) capabilities, can function as a digital twin environment. However, there may be a 
discrepancy between the level of detail represented in the digital twin environment and the level required by 
different AI models, depending on whether they operate more on the engineering, engagement, mission or 
campaign level. In order to bridge this gap, one can benefit from M&S systems capable of multi-resolution 
simulation [44]. 

Concluding 
These considerations for AI-enabled mission simulation originate from our experience and lessons learned 
from various former and current Defence research studies. As the global paradigm in state-of-the-art 
methods for (predictive) task modelling shifts from traditional to AI-based (deep learning) methods, it is 
pertinent to adopt a readiness for theoretical learning and practical adaptation. This last point has proven 
difficult in some of the more established military M&S platforms that originally have a strong basis for 
traditional (non-AI) modelling, although increased awareness can be seen throughout the industry. 

Thus, we aim to provide insight into some of the technical aspects of the ‘AI-readiness’ of military M&S 
platforms, addressing the crucial part simulation systems play in future-proofing support capabilities. Still, 
enabling systems to support AI tools does not directly lead to development efficiency as expenditures to 
develop data- and model-training pipelines require innovative solutions. Nevertheless, the improvements 
state-of-the-art AI models will bring are particularly beneficial. 
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6.  CONCLUSION 

In this paper we discussed the roles and interdependencies of AI and M&S technologies in the context of 
military decision support. If the first half of the paper we started with an analysis and review of military 
decision support in a C2 context (section 2), followed by a horizon scan of AI technologies, reflecting on 
their potential role and impact for decision support (section 3). In the second half of the paper we focused on 
a use case example of a tactical DSS and discussed how decision aid technologies can be used in a variety of 
military activities and contexts (section 4). This was followed by an assessment of AI-enabled mission 
simulation where we discussed considerations for the operationalisation of AI in M&S systems (section 5). 

The accelerating developments in AI hold great promise for military decision support, providing many 
opportunities, but also posing challenges and considerations for operationalization. In this paper we focused 
on one of these considerations, namely the synergy with, and role of (mission) simulation. One the one hand, 
simulation supports AI development by offering a data source and training environment, able to reflect 
military missions and activities. On the other hand, AI supports simulation development through advances in 
generative AI where representative scenarios, environments and simulation (behaviour) models can be 
generated. Finally, the simulation as a digital twin provides a conduit between AI models and real-world 
military operational environment.  

There is much active research on other aspects of AI operationalization in the military domain that we did 
not address. Consider for example themes such as robustness, verification and validation, transparency and 
explainability, data quality and governance, and ethical and legal aspects. Developing and successfully 
operationalizing fit for purpose AI for military decision support requires a holistic approach where all such 
themes need to be considered when AI models are integrated in DSSs. A plausible evolution of more 
intelligent DSSs is the incremental development and integration of AI models that offer specific analytical, 
decision aid, and teaming functions, hereby advancing from more isolated, pragmatic levels of support to 
more interconnected, conceptual levels of support where a shared understanding of the decision problem and 
environment can be established between man and machine. We believe that M&S systems will play an 
important role in this development, supporting the experimentation, validation and evaluation of DSS 
technology for military operators in current and future operational environments. 
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